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Received 23 November 1976, in final form 8 March 1977 

Abstract. The use of variational approximations in the study and application of renormali- 
zation groups is discussed. In particular, a simple approximation is derived which yields an 
upper bound to the free energy of king models on d-dimensional lattices. The optimal 
transformation, which yields the least upper bound, is determined analytically. The 
criterion proposed by Kadanoff to determine the ‘best’ approximation to the fixed point is 
found to fail in this case. The reasons for this failure and several of the basic problems posed 
by variational approximations are discussed. 

1. Introduction 

Recently, Kadanoff (1975) reported a remarkably accurate determination of the critical 
exponents of d-dimensional Ising spin systems (d = 2, 3,4)  using a variational approxi- 
mation to a renormalization group transformation with an arbitrary parameter. The 
specific approximation-the so called one-hypercube approximation-discussed by 
Kadanoff (1975), and in more detail by Kadanoff et al (1976), yields a lower bound to 
the exact free energy. An optimum bound then follows by adjusting the parameter of 
the transformation variationally. The results obtained in this manner (Kadanoff 1975, 
Kadanoff et a1 1976) constitute one of the most accurate approximate renormalization 
group calculations yet performed. As such, they suggest that variational approxima- 
tions may have considerable potential in the study and application of renormalization 
groups. 

In this paper, we discuss an alternative approximation which leads to an upper 
bound on the free energy. Whilst this approximation is not as accurate as Kadanoff ’s, it 
is still rather instructive. In particular, the optimal transformation can be determined 
analytically. In addition, the approximation is sufficiently simple to exhibit the inter- 
play of renormalization group and variational techniques rather clearly. Consequently, 
several of the basic questions and problems raised by variational methods become 
apparent. Some of the special problems of the Kadanoff approximation have been 
discussed recently by Burkhardt (1976). 

Our detailed arguments are arranged as follows. The basic approximation is derived 
in § 2 for Ising systems on d-dimensional lattices. Section 3 specializes this discussion to 
the square lattice. However the basic conclusions are easily extended; this being done 
in § 4. Section 5 contains a concluding discussion in which we compare and contrast this 
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1188 M N Barber 

upper bound approximation with the lower bound approximation of Kadanoff (1975) 
and, in particular, discuss some of the basic problems posed by these types of 
approximations. 

2. An upper bound transformation 

Let H{c+} be the Hamiltonian of N Ising spins (q = * l ,  i = 1,. . . , N )  on a d -  
dimensional lattice R with lattice spacing a. To define a renormalization group 
transformation we form cells of n = bd lattice sites, such that the centres of the cells 
form a lattice Cl’ which is isomorphic to R but has an increased lattice spacing, a’ = ba. 
With each cell is associated a new spin variable pa  = * l ,  a = 1 ,  . . . , N’= N/bd .  The 
Hamiltonian H’{p}  of this ‘cell-spin’ system is given by 

where we explicitly indicate the constant or ’spin-independent’ term, -Ng, generated in 
H’ by the sum over configurations. (Without loss of generality, we assume that the total 
energy is shifted so that corresponding term in the initial Hamiltonian H vanishes.) 

The transformation (2.1) is an example of a real-space renormalization group 
transformation with spatial rescaling factor equal to b. (A recent review of such 
transformations has been given by Niemeijer and van Leeuwen 1976.) The transforma- 
tion matrix Y{p, v} is taken to be 

Y{P, g }  = fl T(pa, a a  ), T(pa, a a ) = i ( 1 + p a t ( a a ) ) ,  (2.2) 
a 

where a, denotes the set of spins vi in a cell Q and the product is over all cells. Different 
transformations (with the same spatial rescaling factor) correspond to different choices 
of the function t(aa). We shall refer to t as the transformation generator. To ensure 
that (2.1) preserves spin-reversal symmetry, we require t(ua) to be odd under spin 
reversal, i.e. t + -t,  if gi -+ -ui, for all i E a. 

With Y{ p, g }  given by ( 2 . 2 ) ,  the partition function transforms as 

Hence the free energy per spin 

satisfies 
f(H) = g + b-df(H’). (2.5) 

This result forms the basis of the calculation of free energies by renormalization group 
techniques (see e.g. Nauenberg and Nienhuis 1974). 

In general, however, the sum over configurations in ( 2 . 1 )  cannot be performed 
exactly and hence H‘{p}  can only be evaluated approximately. Following Kadanoff 
(1975) we are interested in approximations which ensure a definite bound tof(H).  A 
rather simple approximation, yielding an upper bound, is supplied by Jensen’s inequal- 
ity as follows. 
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Decompose H{a}  as 

H{ a} = Ho + v, 
a 

where Ho,a contains all the interactions between spins in cell a and V all the intercell 
couplings. Substitution of (2.2) and (2.6) allows (2.1) to be written as 

where 

and 

with 

(2.7) 

(2.10) 

Provided Y{p, a} is non-negative, P{p ,  a} may be regarded as a probability measure 
and hence by Jensen’s inequality (see e.g. Beckenbach and Bellman 1961) 

(eV>o 3 exp(( W O ) .  (2.11) 

Combining this result with (2.7) and summing over the configurations of the set { p }  
gives 

z,(H) 3 e-””Z,,(HX), (2.12) 

where 

-NgA+Hkb)=L, ln  ZO,a +(v>O, (2.13) 

with gA(H) the spin-independent part. The required bound on f(H) follows 
immediately, namely 

f(H) gA+b-df(Hk)* (2.14) 

The approximation (2.13) for the renormalized Hamiltonian H’{p}  will be recognized 
as equivalent to a first-order cumulant expansion in terms of the intercell interactions 
(see e.g. Niemeijer and van Leeuwen 1974, 1976). 

In general both gA and H i  will depend upon the specific transformation chosen, i.e. 
on the function t(u,). Hence the optimum bound is 

a 

f(H) <fA(H) = min (gA(H; t )  +b-df(Hk(t))), (2.15) 

where the restriction that Y{p, a} be non-negative implies that the minimization is to be 
performed over all functions t(u,) subject to the constraint that It1 s 1. We shall refer to 
this approximation as the Jensen (upper) bound approximation. 
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Since the expression (2.15) still contains the exact (and unknown) free energy, one 
cannot expect to be able to directly evaluate fA(H)  for most approximations. In the 
present case, it is however possible to determine the optimal choice of t to ensure that 
fA(H)  is the optimum bound. To see how this comes about, it is convenient to consider a 
specific example on the square lattice. The basic conclusions are however easily 
extended and we shall do so in 8 4. 

3. Square lattice 

We consider the site-cell transformation indicated in figure 1; the spins {pa} being 
associated with the shaded cells. Since t(aa) is required to be odd under spin reversal, 
we parametrize it as 

t(a,) = i ( p  +qa;la~at;a4")(a;l+a~+a~+a~), (3.1) 
where a:, i = 1, . . . , 4 ,  are the four spins at the vertices of the cell a (see figure 1). This 
transformation is, in fact, the most general transformation which preserves the point- 
group symmetry of a square of four spins. To avoid the problems associated with a 
linear weight factor (Subbarao 1975, Bell and Wilson 1975, Niemeijer and van 
Leeuwen 1976) we require q to be non-zero, while the condition It( s 1 implies that 

lP + q I c  1, IP -41 2. (3.2) 

Figure 1. Square lattice illustrating the cell transformation used in the variational calcula- 
tion. The renormalized spins are associated with the shaded cells. 

In passing we note that the transformation treated by Kadanoff (1975) is given by (with 
p replacing his p )  

(3.3) p = i(tanh 4p + 2 tanh 2 p ) ,  q = f(tanh 4p -2 tanh 2p).  

3.1. Determination of the optimal transformation 

For our immediate purposes it suffices to take H{o}  to be the sum over nearest- 
neighbour pairs, namely, 

(3.4) 
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The determination of z , , ~  and (V), now follows that of an ordinary cumulant expansion 
(see e.g. Niemeijer and van Leeuwen 1974, 1976). Explicitly we find 

(3.5) 1 
g A  = -;i In 2 0 , ~  = -a  ln(6 2 cosh 4K2) 

and 

(V), = K; c PaPp, (3.6) 
(4 ) 

where the sum is over all nearest-neighbour pairs of cell spins. The renormalized pair 
interaction K ;  is given by 

K ;  = R ( K 2 ;  p ,  q )  = 2K2h2(e-4K'; p ,  4 ) ,  (3.7) 

where 

Equation (3.7) constitutes the basic recursion relation. Given K 2 ,  we now require p 
and q to minimize (2.15) which becomes, since b = 2, 

subject to the constraints (3.2). Since g A  is independent of p and q, we immediately 
have 

If we now invoke the GKS inequality (Griffiths 1967, Kelly and Sherman 1968), which is 
valid for Ising systems with positive coupling constants, it is straightforward to show that 
df/dK is negative for all K and hence f ( K )  is a monotonic decreasing function of its 
argument. This implies that to achieve the minimum in (3.10), we must choose p and q 
such that 

( R ( K , ; p , q ) - K , )  is a maximum if R > K 2  

and 

(K2-R(K2;  p ,  4 ) )  is a minimum if R s K 2 ,  
Both these conditions are equivalent to the criterion that h ( x ;  p ,  4 )  be a maximum 
subject to (3.2) for fixed x = e-4K2. This is a simple linear programming problem and 
yields 

p + = ;  4+= - L  2 (3.11) 

It is instructive to note that this optimal transformation is equivalent to the 
for all K 2 .  

specification of the transformation matrix (2.2) in the form 

1 

T(pa, 2: if Sy=O 

if pu = sgn(Sy), S? # 0 1. if pu = -sgn(Sy), S y  # 0, 

(3.12) 
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where S;=Zieaci .  In this form the transformation is very similar to the original 
site-cell transformations of Niemeijer and van Leeuwen (1973, 1974), except for the 
possibility that Sy is zero since we have an even number of sites in a cell. This suggests 
that the Niemeijer-van Leeuwen transformations may in general be optimal with 
respect to the Jensen bound. In 0 4, we shall confirm this expectation. Before doing so, 
we briefly describe the critical behaviour which follows from (3.7) with p = pf and 
q = q '. This transformation has also been considered in a different context by Hsu and 
Gunton (1977). 

3.2. Fixed point and thermal eigenvalue 

The determination of the fixed point and critical eigenvalues from (3.7) is standard (see 
e.g. Niemeijer and van Leeuwen 1976). We find 

KT = 0.5187, (3.13) 

with a single relevant eigenvalue 

AT = (aK;/aKZ)* = 2.0082 

which implies that 

2-&=2v=- -  In b -  1.9881. 
In AT 

(3.14) 

(3.15) 

Considering the crudity of the basic approximation this result agrees remarkably well 
with the exact value of 2 - a  = 2 v = 2 .  Even the fixed-point value (3.13) agrees 
reasonably well with the exact critical temperature K, = 0.4407. 

3.3. Free energy and specific heat 

Since the optimal choice of p and q is independent of K,, the determination of the 
approximate free energy fA(KZ) from (3.7) and (3.9) follows precisely the same 
procedure as utilized by Nauenberg and Nienhuis (1974). Iterating (3.9) we have 

n-1 

1 = o  
f (K2)  <fA(KZ) = 4-'gA(K$)) +4-"f(K:")), (3.16) 

where 

Ki0)= K Z .  K$+')  = R +(K(') z ) = R(K:"; P+, 4 ' ) ;  

The sequence terminates when K$" is such that f(K$") can be directly evaluated from 
the partition function. 

The resulting free energy is illustrated in figure 2, where we also plot the exact free 
energy (Onsager 1944) and 

gA(KZ) = gA(KZ) -a 2. (3.17) 
That gA(K2) is itself an upper bound to the exact free energy can be seen explicitly by 
observing that R (K2;  0,O) = 0 and hence from (3.9) 

(3.18) 
This bound is asymptotically exact for small K (i.e. at high temperatures) but is a very 
poor bound for large K (i.e. low temperatures). On the other hand, we observe that the 

f ( K )  gA(K) + if@) = gA(K)  - 4 In 2. 
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Figure 2. Comparison of the optimal bound (full curve) given by equation (3.16) with exact 
free energy (broken curve) and the trivial bound (chain curve) of equation (3.17). 

renormalization group bound fA(K) is apparently also asymptotically exact for large K. 
That this is in fact the case can be easily checked analytically. For sufficiently large K, 
the recursion relation (3.7) approximates to 

(3.19) 

(3.20) 

Substituting these results in (3.16) and letting n tend to infinity yields 

fA(KZ.1 -2K2 as K2+w,  (3.21) 

which matches the exact limiting behaviour of the exact free energy f ( K 2 ) .  Since the 
basic approximation (2.11) is, by itself, at best valid for high temperatures (i.e. K small), 
where higher-order cumulants can be neglected, this result illustrates the inherent 
power obtained by incorporating a renormalization group transformation into the 
variational procedure. If nothing else, this allows a substantial improvement in the 
numerical accuracy of the bound. Indeed, most of the discrepancy between fA(K2)and 
f(K2) in figure 2, is due to the relatively large error in K ;  as compared to K,. If one 
re-scales the temperature variables so that Kz and K, are both unity much of the error 
disappears. For example 

~ A ( K ; )  = 0.8818 

while 

f(K,) = 0.9297. 

(3.22) 
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The internal energy and specific heat can also be calculated from (3.16) (see e.g. 
Nauenberg and Nienhuis 1974). These results are qualitatively in accord with the exact 
results but not as accurate as those obtained by Kadanoff et a1 (1976). On the other 
hand, it should be noted that there are no grounds on which to expect that the 
derivatives of f A  should approximate those o f f  at all well, even if f A  ia a very good 
approximation to f. Nevertheless in this case, as in the lower bound approximation of 
Kadanoff et a1 (1976), the use of a renormalization group transformation somehow 
appears to ensure that the derivatives of fA(K2) are reasonable approximations to those 
of f W 2 ) .  

4. Extension to other lattices 

In this section we show that the optimal transformations with respect to the Jensen 
bound are identical to the original site-cell transformations of Niemeijer and van 
Leeuwen (1973, 1974) for cells with an odd number of sites. We first show that if Ho is 
spin-reversal symmetric then zO,, is independent of the transform generator t(a,). To 
do so we write the sum over the configurations of the set U, in (2.8) as 

(4.1) 

where S y  = X i c m  ui. Reversing all the spin variables q in the second sum and making 
use of the fact that Ho,, is even, while t(u,) is odd, under spin reversal yields 

(4.2) 

which is the desired result. 
Turning now to the computation of (V),, it is again sufficient to assume H has the 

form (3.4). The intercell coupling V then consists of a sum of terms, each of which is a 
product of two spin variables associated with different cells. The expectation value of 
this term with respect to Ho therefore factors and we find that the renormalized pair 
interaction has the form 

K ;  = K2 maimp,, (4.3) 

where the sum runs over all bonds linking cells a and p, and 

(4.4) 

The last step of (4.4) follows from the decomposition (4.1). 
The optimal choice of t must now be such that 

gA(K2) + b P d f ( K ; )  = In Zo + b-df(K;)  (4.5) 

is a minimum. Applying the GKS inequality as before implies that t t  should maximize 
(K; -K2)  if K ; > K 2  and minimize ( K 2 - K ; )  if K L s K , ,  which is equivalent to 
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maximizing m,, subject to It(  < 1. The required choice is clearly 

Hence we obtain that 

which is the transformation of Niemeijer and van Leeuwen (1973, 1974). 

such that 
The generalization to cells with an even number of sites is straightforward if t (U,) is 

t(a,) = 0 if S: = 0. (4.8) 

The optimal transformation in this case is again (3.12), which was the transformation 
applied on an ad hoc basis by Oitmaa and Barber (1977) to the simple cubic lattice using 
an eight-site cell. In this case one can check that (4.8) is satisfied for transformations 
which preserve the point-group symmetry of a cube of eight cells. It is possible to 
construct transformations which do not satisfy (4.8). Whether such transformations 
yield a better bound is uncertain since they require a large cell and become more 
cumbersome to handle. 

5. Discussion 

In table 1, we list, for reference, the results of various first-order cumulant approxima- 
tions to Niemeijer-van Leeuwen site-cell transformations, which have been reported in 
the literature. These transformations are, by the analysis of the preceding section, all 
optimal with respect to the Jensen bound derived in § 2. The overall agreement with 
exact or series results is not particularly impressive. Consequently, the accuracy 
obtained in 0 3 is probably somewhat fortuitous. This is borne out if the calculation is 

Table 1. Results of first-order cumulant expansions to optimal transformations. 

Lattice Cell size KT K ,  AT 2 - a  Reference 
n = b d  (exact) approxi- exact 

mate 

3 0.3356 1.642 2.266 Niemeijer and van Leeuwen 
Triangular (1973) 
(d = 2) 0.2744 2 

7 0.3303 2.444 2.178 Subd0 and Hemmer (1976) 

Square 4 0.5187 2.0082 1.988 Present work 
(d = 2) 9 0.4697 0.4407 2.769 2.158 2 Hsu eta1 (1975) 

16 0.4607 3.640 2.146 Hsu and Gunton (1977) 

Simple cubic * 0.298 2.371 2.409 Oitmaa and Barber (1977) 
(d = 3) 1,875" 

27 0.259 o.222a 3.596 2.575 Hsu and Gunton (1977) 

a Series results. 
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extended to yield the magnetic eigenvalue AH. One finds AH = 2.367 instead of the 
exact value of 3.668. On the other hand, there is evidence (Plischke and Austin 1975, 
Barber to be published) which indicates that the Kadanoff approximation is also less 
successful when applied to other two-dimensional lattices than the square. 

A couple of features of the results in table 1 are worth additional comment. Firstly, 
an increase in the cell size apparently leads to an increase in the accuracy of the estimate 
of the critical temperature. There is, however, not always a corresponding improve- 
ment in the estimate of 2 - a. It would be interesting to know if the approximate free 
energy fA(H;  n )  obtained using a cell of size n is a monotonic decreasing bound on the 
exact free energy as n increases. We have not, however, explored this point further. 

Secondly, all these calculations have been extended to at least second order in the 
cumulant expansion of (exp V) (see the references cited in table 1). Whilst the 
comparison of the estimates of K ,  and 2 - a with the exact values improves in second 
order, there is no longer an objective criterion to distinguish between different choices 
of the transformation generator. Since there is no evidence that the cumulant expan- 
sion is convergent (see in particular, Hsu and Gunton 1977);this is one of the major 
disadvantages of these types of approximation; a disadvantage that the variational 
approach attempts to overcome. 

The actual accuracy of the Jensen bound approximation, however, is not our 
primary concern in this paper. Rather, as discussed in 9 1, our motivation has been in 
the variational method itself. In this concluding section, we therefore want to use the 
results of 9 3 to illustrate and discuss some of the basic problems which arise in 
variational approximations to renormalization group transformations. 

We begin by indicating how some of the simplifying features of the Jensen bound are 
probably modified in more sophisticated approximations. Firstly, the minimization in 
(2.15) cannot be expected to be tractable as it stands, since it involves the unknown 
exact free energy functional f (  ). To eliminate f ,  (2.15) must be iterated as in (3.16) to 
yield? 

where the minimization is to be performed subject to any necessary constants. The 
sequence 

terminates where Ha"' is such that f (H2 ' )  can be directly evaluated from the partition 
function. The approximate recursion operator R t  as indicated depends explicitly on 
the choice of parameters in the generator t. 

In writing (5.1) we have tacitly assumed that the optimal mapping of H to H' is 
independent of H. This was found to be the case in 9 3 but is not so for the Kadanoff 
approximation (see Kadanoff et a1 1976). Thus, in general, the least upper bound to 
f ( H >  is given not by (5.1) but by 

Ha") = H, (5.2) 
~ ( t )  A - - R b  A ( t )Hi- ' ) ;  

where tk denotes the transformation generator at stage k, i.e. @ ) = R t ( t k ) H g - ' ) .  

t We shall continue to assume that the approximation yields an upper bound to f (H) .  The extension to lower 
bound approximations is, however, straightforward, involving only the replacement of minimizations by 
maximizations. 
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Clearly the evaluation of fA(H)  for arbitrary H will be rather non-trivial since it 
involves a multi-dimensional optimization subject to constraints. 

On the other hand, we are usually not that interested infA(H) itself, but in the fixed 
point of the recursion relation (5.2) and its critical parameters. Depending on the choice 
of the transformation generator, the approximate recursion relations (5.2) possess a 
set of fixed points {H?} parametrized by t. The associated critical parameters conse- 
quently also depend (in general) upon the choice of t. In contrast, the analysis of Bell 
and Wilson (1973,  based on the Gaussian model, suggests that a non-linear transfor- 
mation such as (3.1) possesses a single fixed point. All critical Hamiltonians flow to this 
point provided t is suitably constrained?. Thus we would like to be able to select one of 
the points in {H:} as the best approximation to the exact fixed point. Clearly, it would 
be advantageous if this could be achieved without directly evaluating (5.3) for fA(H) .  

One such criterion has been proposed by Kadanoff (1975). Let us recall the basic 
result (2.15) and let t t  denote the generator which achieves the minimum, i.e. 

f A ( H )  = gA(H; tt)+b-df(Ha(ft))* (5.4) 

Now provided t t  satisfies any inequality constraints with strict inequality, e.g. if the 
minimization is subject to (tl G 1 then t t  must be such that (ttl < 1, the minimum can be 
found by the ordinary methods of calculus. Consequently, if tt is replaced by t t  +at,  the 
change in f A ( H )  will be second order in 6t. The Kadanoff criterion now asserts that this 
condition is also satisfied at the ‘best’ fixed point. 

Since each of the points in {H;} is by definition invariant under the approximate 
recursive operator, the evaluation of fA(H:) by (5.3) involves no optimization. Hence 
letting n tend to infinity yields 

f~(H:)=(l-b-~)-lgA(H:; t )=G*( t ) .  (5 .5 )  

The ‘best’ fixed point is now such that G*(t) is an extremum at t = t t .  
Using this criterion and a lower bound approximation to f (H) ,  Kadanoff (1975) 

located a fixed point which gave 2-a = 1.9983 and 6 = 15.040. As remarked earlier, 
these estimates of the exponents of the two-dimensional Ising model are some of the 
most accurate yet obtained by renormalization group techniques. In view of this 
success, it is instructive to apply this criterion to the transformation defined by (3.7). 

For simplicity suppose 

p = 3A,  q=-A (5.6) 
and consider a one-parameter variational approximation. By (3.2), the variational 
parameter A is restricted to 

IA 1 d 4. (5.7) 
As a function of A, the fixed points of (3.7) are given by 

x * ( A )  =exp(-4K;(A)) = 2&[lA(+(A2+ 1-51A(/2d2)1’2]-3. (5.8) 

By the Kadanoff criterion the optimal value of A is that which makes 

G*(A) =$gA(K*(A); A )  = -4 ln[6+2 ~0sh(4Kg(A))] (5.9) 

‘r The effect of these types of constraints on a variational calculation is unclear. If they could be determined a 
priori, they can, of course, simply be incorporated in the constraints on the optimization. 
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extremal. It is straightforward to show that dG*/dA vanishes at 

A = 2&/3 = 0.9428. (5.10) 

The corresponding value of Kg by (5.8) is zero! However, this value of A is unaccept- 
able since it violates the constraint (5.7). 

Clearly the Kadanoff criterion has failed completely to determine the ‘best’ fixed 
point. The reason for this is not difficult to find. The optimal choice of A, as determined 
from (3.1 l), is A t  = $. This value satisfies the constraint (5.7) as an equality. Thus the 
underlying assumption of the Kadanoff criterion that variations in A from A t  yield 
changes in fA(H)  which are second order in A - A t  need not be valid and is, in this case, 
invalid. 

The attraction of the Kadanoff criterion lies in its simplicity. It does not require 
detailed knowledge of fA(H) which involves a complex optimization (recall (5.3)). On 
the other hand, there is evidence (Bell and Wilson 1975) that the parameters of a 
non-linear renormalization group are by necessity constrained to some degree. 
Consequently the occurrence of boundary optima, such as in § 3, cannot be ruled out in 
more sophisticated approximations. Thus it is of interest to ask if a generalization of the 
Kadanoff criterion can be found to cover this possibility. 

The simplest such generalization is to take the nearest permissible value of the 
variational parameter (or parameters) to that given by the Kadanoff criterion. That is, 
since (5.9) is unacceptable we take A t  = f and thereby recover the result derived directly 
in 9 3. Although this criterion has worked in this example and does so in others, e.g. the 
Kadanoff lower bound approximation on the triangular lattice, where the original 
criterion fails, it remains rather ad hoc. 

The Kadanoff criterion, however, suffers from several additional weaknesses and 
problems. These suggest that its use to determine critical parameters is open to 
question on fundamental grounds. Firstly, as noted by Kadanoff et a1 (1976), the 
conclusion that the optimal choice of variational parameters depends on H implies that 
the determination of critical eigenvalues at fixed values of the parameters (equal to 
those of the optimal fixed point) is internally inconsistent. Numerically, this is probably 
not very significant since small changes in H hopefully make only small changes in the 
optimal values of t. 

More significant is the problem of determining the fixed point, if there exist two or 
more values of t at which G*(t) is extremal. This actually happens in the Kadanoff 
lower bound approximation (Barber to be published, Burkhardt 1976). To distinguish 
between these possible fixed points requires further knowledge than can be obtained 
from the Kadanoff criterion. In particular, one needs to know the critical surfaces 
associated with both points. It is then possible to determine the fixed point to which the 
particular critical Hamiltonian of interest flows. 

The determination of the flow trajectories of Hamiltonians involves a detailed 
knowledge of the optimal values of the variational parameters as functions of the 
coupling constants. This information can only be obtained from (5.3). Thus we are led 
back to the optimization problem posed by this equation. 

If the recursion relation is relatively simple (i.e. computationally rapid) and 
parametrized by only one parameter a straightforward numerical search to determine 
the optimum is probably feasible, particularly if the number of iterations is small. This 
was the procedure adopted by Kadanoff et a1 (1976). For more elaborate approxima- 
tions and/or transformations, more sophisticated and powerful optimization techni- 
ques are necessary. Such techniques have been developed within the context of modern 
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control theory of sequential processes. The application of these methods to the 
determination of optimal renormalization group transformations from variational 
approximations will be discussed in a subsequent paper. In this way, it is hoped to 
resolve some of the basic questions and problems raised in this discussion. 
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